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Torsional displacements and stresses in non-homogeneous soil 

G. GAZETAS* 

A study is presented of the axially symmetric 
deformation of a non-homogeneous elastic halfspace 
subjected to torsional shear tractions that are linearly 
distributed over a circular portion of the otherwise free 
surface. The problem is formulated in terms of Hankel 
integral transforms and an inverse procedure is 
implemented in which the determination of the type of 
non-homogeneity constitutes part of the problem. A 
numerical parametric study shows the effect of the degree 
of soil inhomogeneity on the distribution of 
circumferential displacements and shear stresses in the 
medium. With increasing non-homogeneity stresses affect 
soil at greater vertical and lesser radial distances. 
Gibson’s law of the Winkler-type behaviour of linearly 
inhomogeneous, incompressible soils can only 
qualitatively apply in this case, as the surface displace- 
ments tend to become proportional to the applied local 
pressure and decay rapidly away from the torsionally 
loaded area in strongly non-homogeneous deposits. 

I1 est presenti une etude de la deformation axi symdtrique 
dun semi-espace iiastique non homogene soumis a des 
e5orts de traction par torsion repartis liniairement sur 
une zone circulaire de la surface libre par ailleurs. Le 
probleme est formuli en fonction des transformes 
integrales de Henkel et un procede inverse est applique 
au sein duquel la determination du type de non 
homogineiti constitue une partie du probleme. Une 
etude exhaustive des paramttres numeriques montre 
I’effet du de& de non homogtnbitb du sol sur la 
repartition des deplacements peripheriques et des efforts 
de cisaillement dans le substrat. Les contraintes affectent 
le terrain sur des distances verticales plus grandes et des 
distances radiales moins grandes en fonction de 
I’accroissement de la non homogbneitb. La loi de Gibson 
sur le comportement de type Winkler des sob lineaire- 
ment non homogenes et incompressibles n’est applicable 
que qualitativement dans ce cas, car les d&placements 
superficiels ont tendance a devenir proportionnels a la 
pression apphquie localement et a s’altber en s’tloignant 
rapidement de la zone sous charge de torsion, dans des 
depots de terre fortement non homogtnes. 

INTRODUCTION 

Frequently foundations transmit torsional loads 
on to the soil. This happens whenever asymmetric 
horizontal forces act on the superstructure, as may 
be the case, for instance, during wind storms and 
earthquake shaking. Torsional loading of the 
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parameter defining increase of G 
with depth 
integration constant, function of 
Hankel transform variable 
rate of inhomogeneity bR 
Gauss hypergeometric function 
with parameters g, h and q 
shear modulus 
surface value of shear modulus 
dimensionless influence function 
for circumferential displacement 
dimensionless influence function 
for shear stress components 
first kind Bessel function of order a 
and argument g 
magnitude of imposed torsional 
shear stress at r = R 
radius of loaded area 
polar cylindrical co-ordinates 
circumferential displacement 
first order Hankel transform of u 
(equation (4)) 
normalized depth z/R 
Hankel transform parameter 
normalized radial distance r/R 
non-vanishing shear stress com- 
ponents (Fig. 1) 
functions in inverse procedure 
(equation (7)) 

supporting soil is caused by the horizontal move- 
ments of the antennae of radar towers, the rotation 
of unbalanced masses of reciprocating engines and 
by pneumatic tyres during cornering. Even bridge 
piers subjected to asymmetric stream-water forces 
may produce torsional loads on their foundation 
and nuclear power plant structures, for example, 
must be designed against tornado and impact 
forces that would introduce severe torsional 
shearing of the supporting soil. 

Following Reissner (1937) and Reissner & 
Sagoci (1944) others (e.g. Sneddon, 1951; Bycroft, 
1955; Collins, 1962; Kaldjian, 1971; Waas, 1972; 
Novak & Sachs, 1973; Veletsos & Nair, 1974; 
Luco, 1976; Kausel & Ushijima, 1979) have 
investigated particular aspects of the torsional 
loading problem. Most have studied the dynamic 
moment-rotation relation of harmonically excited 
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rigid circular surface or embedded foundations, 
using analytical, numerical and approximate 
techniques. The static rotation has also been 
obtained from such studies as the limiting case of 
zero frequency oscillation. However, Gerrard & 
Harrison (1974) have given complete solutions for 
the torsional stress, displacement and strain 
distributions within a homogeneous soil mass 
having cross-anisotropic or isotropic properties. 
Linear torsional shear stress and linear torsional 
shear displacement types of loading were 
considered, the latter simulating the conditions 
imposed by a rigid footing perfectly bonded to the 
soil surface. 

These studies all make the assumption of soil 
homogeneity, yet it is well known that soil stiffness 
varies continuously with depth below the surface 
in a manner which depends on the geologic and 
loading history of the particular deposit. For 
instance, even within a uniform layer, soil stiffness 
increases with effective overburden pressure and 
degree of overconsolidation, which are both 
continuous functions of depth. Experimental 
evidence suggests that the stiffness of London clay 
increases approximately linearly with depth (e.g. 
Ward, Samuels & Butler, 19.59; Wroth, 1971). 

Considerable attention has been given to the 
problem of determining stresses and deformations 
caused in non-homogeneous soil deposits by 
vertical, horizontal and moment loading under 
both static (Lekhnitskii, 1962; Gibson, 1967, 1974; 
Awojobi & Gibson, 1973; Awojobi, 1974; 
Chuaprasert 8~ Kassir, 1974; Gibson & Kalsi, 
1974) and dynamic (Awojobi, 1972; Gazetas, 1980) 
conditions. Gibson (1974) presents a list of publica- 
tions on the subject. The most striking finding of 
these studiesqibson’s law-is that an incom- 
pressible soil, with modulus which increases 
linearly with depth (being zero at the surface), 
responds to vertical loads as a Winkler medium, 
i.e. as a uniform bed of independent springs, with 
the surface settlement being proportional to the 
local pressure. For other types of loading and 
forms of soil inhomogeneity, this law is not strictly 
valid; nevertheless, in most cases the displacements 
of the free surface away from the loaded area decay 
faster than the elastic homogeneous theories 
predict, and the distribution of soil reactions 
against rigid foundations may be uniform, in 
accordance wi::, a Winkler-type rather than a 
homogeneous continuum hypothesis. 

To the Author’s knowledge, no similar study has 
been undertaken with regard to torsional loading. 
This Paper investigates the effect of inhomogeneity 
on the axially symmetric elastic deformation 
arising in a soil deposit which is subjected to 
torsional shear tractions distributed linearly over a 
circular portion of the surface. Soil inhomogeneity 

is described by a shear modulus monotonically 
increasing with depth; it is evident that such a 
variation in modulus can adequately represent a 
broad class of soil deposits, ranging from mildly 
(c < 0.2) to strongly (c > 05) inhomogeneous.’ 

The problem is formulated in terms of Hankel 
integral transforms. To obtain analytical 
expressions for displacement and stresses, in 
transform space, an inverse procedure has been 
devised in which the type of inhomogeneity has to 
be determined. As analytical inversion of the 
Hankel transforms of the resulting expression 
appears intractable, a simple numerical integration 
scheme is used to obtain the complete solution for 
stress and displacement distributions in the soil. 

Parametric studies show that soil inhomo- 
geneity has a considerable effect on all stress and 
displacement components in the medium. As the 
degree of inhomogeneity increases, torsional shear 
stresses affect the soil at greater vertical and lesser 
radial distances; surface circumferential displace- 
ments decay even more rapidly away from the 
loading area. This extends, although only in 
qualitative terms, the applicability of Gibson’s law 
to torsionally loaded non-homogeneous soils of 

the type considered in the Paper. 

THE PROBLEM AND GOVERNING 

EQUATIONS 

Of interest are the stresses and displacements 
arising in a non-homogeneous isotropic halfspace 
(z > 0) when axisymmetric torsional shear tractions 
are imposed on a circular portion (r < R) of the 
surface (z = 0) while the remaining portion (P > R) 
of the surface is stress-free. The centre 0 of the 
loaded area is taken to be the origin of cylindrical 
polar co-ordinates r, 0, z, as shown in Fig. 1, and 
linear variation of the imposed tractions with r is 
considered. 

Due to the symmetry of the problem, there is no 
dependence on 0 and the components of the 
displacement in the r and z directions are zero at 
all points, e.g. Reissner & Sagoci (1944), Collins 
(1962). Consequently, only circumferential 
displacements v(r, z) occur, yielding two non-zero 
components of stress (Fig. l(b)) 

Q-, Z) = G(Z) atqaz W 

(lb) 

’ Moreover, as only shear deformations are produced by 
an axisymmetric torsional loading of an elastic medium, 
soil compressibility has no effect on the distribution of 
stresses and displacements studied in this Paper. The 
conclusions drawn are therefore applicable to 
compressible and incompressible soils (i.e. under drained 
and undrained conditions). 
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Fig. 1. Loading geometry, co-ordinate axes and non- 
vanishing shear stress components 

in which G(z) is the yet unspecified shear modulus 
at a depth z. In the absence of body forces, 
equilibrium in the circumferential direction yields 

G(z)(~+;~-~)+~[G(z)~] = 0 (2) 

The appropriate boundary conditions at the 
surface are 

r&,0) = par/R, r<R (34 

7,&r, 0) = 0, r > R (W 

in which R is the radius of the loaded area and the 
constant p. represents the magnitude of the 
imposed torsional shear stress at r = R (Fig. 1). 
Far from the surface it is required that 

v(r, z) = 7,&r, z) = 7,&r, z) = 0 J(r’ + 2) = co 

(3c) 
In view of the axial symmetry, the problem can 

be expeditiously formulated by recourse to the 
theory of Hankel transforms (Sneddon, 1951). The 
first order Hankel transform of v(r, z) is introduced, 
i.e. 

F(&z) = Hi{v(r,z); 0 = 
s 

m ruJl(t;r)dr W 
0 

where u(r, z) can be recovered from I’((, z) using the 
inversion theorem 

@,z) = H,-‘(V(‘(5,z); r}= 
s 

m 5vJl(5r)dt WI 
0 

J,(x) denotes the first kind and first order Bessel 
function of x. 

Both sides of equation (2) are then multiplied by 
rJ,(@) and integrated with respect to r from 0 to 
co. As (Sneddon, 1951) 

W 

this leads to 

G(z) t2 v= $ [ 1 qzg (6) 

INVERSE PROCEDURE AND SOLUTION IN 
TRANSFORMED SPACE 

It is expedient not only to obtain an analytical 
solution of equation (6), but also to have the 
solution in a form that will allow the direct 
analytical evaluation of the constants of integra- 
tion. This is not possible with an arbitrary 
variation law of the shear modulus with depth G(z). 
An inverse procedure is developed here in which 
the function describing the variation of modulus 
with depth is not prespecified, but its determina- 
tion constitutes part of the problem. To this end, a 
system of differential equations is constructed that 
transforms equation (6) into an equation of the 
same form with the corresponding equation for a 
torsionally loaded homogeneous halfspace. The 
solutions of the system and the latter equation are 
then combined to obtain the solution for a torsion- 
ally loaded halfspace, and simultaneously the 
functional form of the shear modulus G(z) is 
determined. A similar inverse procedure has been 
developed by Schreyer (1977), who studied the 
one-dimensional wave propagation into an 
inhomogeneous halfspace, and by Gazetas (1981), 
who investigated the shear vibrations of vertically 
inhomogeneous earth dams. 

Consider a transformation of the dependent 
variable V(& z) and the independent variable z in 
equation (6) of the form 

W 4 = W 45, so) (7a) 

zo = f(z) (7b) 

with the restrictions 

$(z)>O and f(z)>0 for z>O (ga) 

f(0) = 0 (gb) 

This transformation is used to reduce the 
governing equation (6) to 

52 u(&zo) = a2d2~~;zo) 
0 

in which a is a positive constant. The general 
solution of equation (9) is 

u(& ZO) = W)exp(-tzo14 (10) 

in view of the boundary condition (3~). The 
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Fig. 2. Variation of shear modulus of soil with depth 
below the surface. for several values of the rate of non- 
homogeneity c 

integration constant B(t) then has to be 
determined from the boundary conditions of the 
problem ((3a) and (3b)). 

Expressions (7a) and (7b) are now substituted 
into equation (6), with F,, and F,,, used to denote 
the first and second derivatives of F with respect to 
x. This gives 

GY2 rc/u = (Gf,z2 $) u,,ozo 

+(2G@,, f,.+~G,.f.+G~f,..)u,, 

+(G,, $,,+ GJ/.,,)u (11) 

To match equations (11) and (9), f, $ and G must 
satisfy the differential equations 

f,Z2 = a2 (124 

2Gl/l,,f,,+~G,,f,,+Gl//f,, = 0 SW 

G,, $.z + W,,, = 0 WC) 

which, for a non-trivial solution obeying the 
restrictions @a) and (Sb), can be recast in the form 

f=az (13a) 

(Gll/’ f,,),= = 0 (I3b) 

(Gti,,),, = 0 (13c) 

Equations (13b) and (13~) simplify to 

G$’ = constant (14) 

G$,, = constant (15) 

from which it directly follows by integration that 

G = G,,(l +b~)~ (16) 

$ = 1/(1+bz) (17) 

where b and G, are integration constants. 
Combining equations (7), (17), (13a) and (10) 

gives the solution of equation (6) 

W,z) =sexp(-tz) (18) 

provided that the variation of shear modulus with 

depth is given by equation (16).2 Using a dimen- 
sionless parameter c = bR, called the rate of 
inhomogeneity, where R is the radius of the loaded 
area, equation (16) is written as 

G/G,, = (1 + cc)’ (16a) 
where < = z/R. 

Figure 2 shows G/G, as a function of 5 for 
several positive values of c. It is evident that a 
broad class of (inhomogeneous) soil deposits can 
be represented by equation (16a). For c = 0, in 
particular, equation (16a) reduces to G = G, and 
represents the homogeneous halfspace. For small 
values of c, say less than 2.0, and small depths, say 
less than 2R, equation (16a) can be reasonably 
accurately approximated by a straight line and, 
thus, may represent the so-called generalized 
Gibson soil (Gibson, 1967, 1974; Awojobi, 1972, 
1974; Awojobi & Gibson, 1973). With larger values 
of c, equation (16a) models more extreme cases of 
soil inhomogeneity. 

The expedience of extending the vertical axis in 
Fig. 2 only to a value of c of about 2,5 may be 
questioned. However, below a depth of 2R the 
stresses in the soil are negligibly small-less than 
5% of the maximum applied torsional shear 
stress-and the exact variation of G below this 
depth hardly influences deformations and stresses 
in the soil. 

The transformed function V(<,z) and equation 
(4b) are then used to recover the displacement 
v(r, z). Similarly, equations (la) and (lb) are 
transformed and the inversion theorem (Sneddon, 
1951) is used to give 

7ze = G(z) 
s 

m rWt~4 

0 
,,Jdb9dS (194 

7,~ = G(z) 
s 

m t2 U5>4JAb)dS W-4 
0 

B(5) is then evaluated by recourse to the boundary 
conditions. 

ENFORCEMENT OF BOUNDARY 
CONDITIONS AND SOLUTION 

By subsituting equation (18) into equation (19a), 
equations (3) can be written as 

s 
om (r + @B(5) tJ1(5r)& 

t 

PO r --- 
= 

G R, O<:r<R (204 
0 

0, r>R (2W 

‘Direct substitution shows that equation (18) is a 
solution of equation (6) if G varies according to equation 

(16). 



By introducing the substitutions 

x = 5R 

p = r/R 

I M = B(x/R3) (x + c) 

equations (20a) and (20b) are reduced to 

(21) 

s 

-$, O<p<l (22a) 
m 0 

M(x) J,(px)dx = 
0 

1 
0, P>l (‘W 

These equations belong to the class of dual integral 
equations solved by Busbridge (1938). The 
function M(x) is given by (Sneddon, 1951) 

M(x) = -xJ,(x) 
s 

l PO 
-yy3dy 

o Go 
1 

_ s s w* dw 1&L yw(xy)’ J,(xy) dy (23a) 
0 o Go 

Performing the integrations and making use of the 
recurrence relations of the Bessel functions 
(Watson, 1944), simplifies expression (23a) to 

M(x) = -2 J&) (23b) 
0 

The integration constant B(l) is obtained from 
equations (21) and thus V(&z) is fully determined 
from equation (18). Equations (4b) and (19) give 
for the displacement and stresses 
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Fig. 3. Radial distribution of circumferential displace- 
ments on three horizontal planes with [ = 0, O-25 and O-5 

in which 

I” = (1 +c[)_’ 

POR 
v(r, 4 = -G I,@; P, 0 

0 

X s m J&4 JI(PX) 
exp (- ix) dx (24a) 

0 x+c 

L9 = s m J,(x) J&x) 

0 x+c 

xexp(-[x)[x(l+c<)+c]dx (25a) 

hk, 4 = p. MC; P, i) (25) 4, = (1 +ci) 5 “xexp(-ix) 

0 x+c 

7,!9(~, 4 = --PO MC; P> 0 (26) x J,(x) J2(px) dx Wa) 

Table 1. Effect of upper limit and number of intervals used to approximate the 
infinite integrals of th; kfloence function 

i 

000 

0.25 

P 

0.50 
1.00 
1.50 
2.00 

0.50 
1GO 
1.50 
200 

Numc ,ical values of I, for c = OWOl* 

A=lOO, 
N=400 

A = 100, 
N=200 

D22507 0.22507 
0.21216 0.21216 
0.06344 0.06344 
0.03354 0.03354 

0.12712 0.12712 
0.12665 0.12665 
0.05913 0.05913 
0.03246 0.03246 

*A = Upper limit. N = Number of intervals of the integration scheme. 

I” for c = 0 
from 

Gerrard & 
Harrison (1974) 

0.2252 
0.2122 
0.0635 
0.0335 

0.1282 
0.1267 
0.0586 
0.0325 
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Normalized shear stress - vG,,lP,R 
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Fig. 4. Vertical distribution of circumferential displacements on three 
radial planes with p = &2S, 0.75 and 1.5 

It appears that analytical evaluation of these 
integrals is not possible. However, their numerical 
evaluation presents no special difficulties. The inte- 
grands and their first derivatives possess no 
singularities as x varies from zero to infinity and 
use of Simpson’s one third rule gives good 
accuracy when the upper limit of integration A is 
taken as 100 and the range of integration is divided 
into N = 200 intervals. Table 1 shows the influence 
of A and N on the computed values of I, for depths 
z = 0 and z = 0.25R, and c = 00001. As a check, 
these values are compared with the numerical 
results of Gerrard & Harrison (1970) for a 
homogeneous halfspace, i.e. with c = 0. Even with 

P 
0 05 1 15 2 

Fig. 5. Isodisplacement contours with - uG,,/po R = @l, again in agreement with Gerrard & Harrison 
0+5 and WOl (1974). 

A = 25 and N = 100 reasonable accuracy is 
achieved with the numerical scheme. 

For c = 0 the integral expressions for I,, I,, and 
I,, reduce to the theoretical expressions given by 
Gerrard & Harrison (1970) for a homogeneous 
halfspace, e.g. when z = 0 

I” = s m J I J&d dx 

Wb) 
0 X 

which belongs to the class of the Weber- 
Schafheitlin integrals (Watson, 1944) and can be 
evaluated analytically 

; zF,(15, -0.5; 2; pz), P<l 
\ 

p = 1 (24c) 

$p-’ zF,(15, 0.5; 3; P-~), p> 1 1 

in which 2F1 denotes the Gauss hypergeometric 
function (Watson, 1944). Equation (24~) coincides 
with the expressions of Gerrard & Harrison (1974). 
Similarly I,, reduces to p for p < 1, and vanishes for 
p> 1 in apparent agreement with the imposed 
boundary conditions (3). II0 reduces to 
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p = O-25 p=o75 

Normalized shear stress r&p0 
006 

Fig. 6. Vertical distribution of shear stresses rZO on three radial planes with 
p = O-250-75 and l-5 

CIRCUMFERENTIAL DISPLACEMENT 

The radial distribution of circumferential 
displacements on three horizontal planes with 
depths z = 0 (surface), z = 0.25R and z = 0.5R is 
shown in Fig. 3, for several values of the rate of 
inhomogeneity ranging from c = 0 (homogeneous 
medium) to c = 10 (extreme case of 
inhomogeneity). The magnitude of displacements 
decreases everywhere with increasing c, as 
anticipated because of the increasing stiffness of the 
medium (Fig. 2). Moreover, surface displacements 
decrease much faster away from the loaded area 
(i.e. for r > R) than they do under the load (I < R). 
For example, although at r = 0.8R, 
u~~~z,/v,,~o,~O~158/O~2862:O~552, at r = 1.2R the 
corresponding ratio reduces to 0.031/0.108 N 0.287, 
i.e. to about half the preceding value. Thus, in 
strongly inhomogeneous deposits (c > 0.5) surface 
displacements are insignificant beyond, say, 1.5 
radii from the centre of the foundation. In 
addition, as c increases, the displacement profile of 
the loaded area tends to assume a nearly triangular 
shape; the surface displacements therefore become 
almost proportional to the applied local shear 
stress (equation (3)). In a Winkler medium the 
displacements would be exactly proportional to 
applied stress. Thus, Gibson’s law (Awojobi, 1972, 
1974; Gibson, 1974; Gibson & Kalsi, 1974) applies 
qualitatively to torsionally loaded, strongly non- 

Fig. 7 (above right). Radial distribution of shear stresses rZO 
on three horizontal planes with [ = O-0125, O-25 and O-5 

Fig. 8 (below right). Iso-shear stress rZO contours with 
r,,/p, = O-5, @25, O-15 and O-05 15- 

'\ ‘__-- *\ .' 
*\ . .._._.-.H.’ wpo 
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p = o-25 
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Normalized shear stress - Z~ 
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p=o.75 p=1.5 

Fig. 9. Vertical distribution of shear stresses fro on three radial planes with 
p = o-25, o-75 and 1.5 

homogeneous soils the stiffness of which increases 
with depth according to equation ( 16).3 

The vertical distribution of circumferential 
displacements, shown in Fig. 4 for c = t&10 and 
0.25R, 0.75R and 1.5R, shows that negligible 
displacement occurs below a depth of about 15R. 
Therefore, the existence of a stiffer stratum (e.g. 
rigid bedrock) beyond this depth would hardly 
influence the results presented here for a halfspace. 
Kausel & Ushijima (1979), using a finite element 
formulation, arrived at essentially the same 
conclusion for a rigid circular footing resting on a 
uniform soil stratum on rock: the torsional stiffness 
of the footing is independent of the stratum thick- 
ness H as long as H 2 2R. 

Figure 5 summarizes information on the 
distribution of circumferential displacement in the 
soil by showing the equal displacement contours 
corresponding to - oGo/(pO R) values of 0.1, 0.05 
and 0.01. (For clarity, the 0.1 contour is not shown 
for c = 5.) 

SHEAR STRESS ON HORIZONTAL PLANES 

Figures 68 show the distribution of the shear 
stress T,@ in an inhomogeneous soil mass with 
c = O-10. Three vertical and three horizontal 
cross-sections of the distribution are shown in Figs 
6 and 7, respectively; equal stress contours are 
shown in Fig. 8. With increasing degree of non- 

3 Gibson’s law applies exactly only to an incompressible 
halfspace the modulus of which increases linearly with 
depth, being zero at the surface. The soil studied here has 
a modulus increasing with depth according to equation 
(16) (see Fig. 2); soil compressibility has no effect on the 
results which, consequently, apply to compressible and 
incompressible soils. 

homogeneity, shear stresses affect the soil at 
greater vertical and lesser radial distances (near the 
surface), in agreement with intuition which expects 
stiffer material to attract larger stresses. 
Chuaprasert & Kassir (1974) deduced a similar 
conclusion with a vertically loaded inhomo- 
geneous halfspace. 

Even in strongly inhomogeneous soils (i.e. 
c > 0.5), the shear stress r,@ attains values less than 
about 10% of the corresponding applied surface 
traction, at depths below 1.5R. This value may be 
compared with the depth of approximately 45 
radii required for a decrease of the normal vertical 
stress to a value of 10% of the applied normal 
surface pressure (Chuaprasert & Kassir, 1974; 
Poulos & Davis, 1974). The difference is partly due 
to differences in the distribution of the applied 
stresses and partly due to the fact that, on any 
horizontal plane, small torsional stresses at large 
radii contribute much more to equilibrating an 
applied normal force. 

SHEAR STRESS ON RADIAL PLANES 

Figures 9 and 10 show the distribution of r,@ in 
the form of three vertical and three radial profiles, 
respectively, and Fig. 11 shows a number of iso- 
stress contours. The shear stress 7,@ bulb becomes 
deeper but narrower as soil inhomogeneity 
increases. 

Large stresses 7,.@ develop only under the edge of 
the loading area. At the surface, in particular, 7,@ is 
infinite at p = R, regardless of the value of c. A 
similar occurrence of infinite stresses is common 
with contact problems in continuum mechanics, 
whenever a sudden change in applied stresses or 
displacements occurs, e.g. under the edges of rigid 
footings. It is generally hypothesized that the 
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Fig. 10. Radial distribution of shear stress 5,@ on three 
horizontal planes with [ = 0, @25 and 0.5 

redistribution of stresses due to yielding of the soil 
in a narrow region surrounding the singularity 
does not significantly affect the overall results. 

CONCLUSIONS 

Torsional loads applied over a circular area of 
radius R on the surface of a deposit are only felt by 
the near-surface soil, up to a depth of about 2R. 
This is true despite the fact that, in soil deposits 
with shear modulus increasing rapidly with depth, 
circumferential shear stresses influence soil at 
greater vertical and lesser horizontal distances 
than those corresponding to homogeneous 
deposits. Moreover, with strong non-homogeneity, 
circumferential surface displacements are 
appreciable only up to a radial distance of about 
1.5R, whereas within the loaded area their 
distribution approaches the triangular distribution 
of the applied torsional stresses. Thus, Gibson’s 
law of the Winkler-spring behaviour of linearly 
inhomogeneous and incompressible normally 
loaded soils is qualitatively extended to torsionally 
loaded strongly inhomogeneous soils of the type 
considered in this Paper. 
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